Communication Sparsity in Distributed Spiking Neural Network Simulations to Improve Scalability
نویسندگان
چکیده
منابع مشابه
Efficiently passing messages in distributed spiking neural network simulation
Efficiently passing spiking messages in a neural model is an important aspect of high-performance simulation. As the scale of networks has increased so has the size of the computing systems required to simulate them. In addition, the information exchange of these resources has become more of an impediment to performance. In this paper we explore spike message passing using different mechanisms ...
متن کاملEvent-driven simulations of a plastic, spiking neural network.
We consider a fully connected network of leaky integrate-and-fire neurons with spike-timing-dependent plasticity. The plasticity is controlled by a parameter representing the expected weight of a synapse between neurons that are firing randomly with the same mean frequency. For low values of the plasticity parameter, the activities of the system are dominated by noise, while large values of the...
متن کاملSaliency extraction with a distributed spiking neural network
We present a distributed spiking neuron network (SNN) for handling low-level visual perception in order to extract salient locations in robot camera images. We describe a new method which reduce the computional load of the whole system, stemming from our choices of architecture. We also describe a modeling of post-synaptic potential, which allows to quickly compute the contribution of a sum of ...
متن کاملSpiking Neural Network Architecture
ARM microprocessors are found in nearly every consumer device, from smartphones to gameboxes to e-readers and digital televisions. But did you know that, combined, these same ARM microprocessor cores can simulate the human brain? The Spiking Neural Network Architecture (SpiNNaker), a massively parallel neurocomputer architecture, aims to use more than one million ARM microprocessor cores to mod...
متن کاملRadial Basis Neural Network Based Islanding Detection in Distributed Generation
This article presents a Radial Basis Neural Network (RBNN) based islanding detection technique. Islanding detection and prevention is a mandatory requirement for grid-connected distributed generation (DG) systems. Several methods based on passive and active detection scheme have been proposed. While passive schemes have a large non detection zone (NDZ), concern has been raised on active method ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Neuroinformatics
سال: 2019
ISSN: 1662-5196
DOI: 10.3389/fninf.2019.00019